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Abstract

This paper presents an algorithm for estimating the angular rate vector of a satellite which is based

on the time derivatives of vector measurements expressed in a reference and body coordinate. The

computed derivatives are fed into a special Kalman filter which yields an estimate of the spacecraft
angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the

Interlaced Kalman Filter (IKF) presented in the literature. Like the IKF, the EIKF is a suboptimal

Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It
consists of two or three parallel Kalman filters whose individual estimates are fed to one another and

are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the

nonlinear differential equation that describes the rotation of a three dimensional body. Initial
results using simulated data, and real RXTE data indicate that the algorithm is efficient and robust.

L INTRODUCTION

Small inexpensive satellites which do not carry gyroscopes on board still need to know their angular
rate vector for attitude determination and for control loop dam ping. The same necessity exists also in

gyro equipped satellites when performing high rate maneuvers whose angular rate is out of range of the

on board gyros. While the attitude determination task requires high precision angular rate

measurements, low precision angular rate measurements are adequate for control loop damping. Satellites

usually utilize vector measurements for attitude determination. Such measurements are, for example, of
the direction of the nadir, of the sun, of the magnetic field vector, etc. The vector measurements can

be differentiated in time in order to obtain valuable information. This approach was used by Natanson 1

for estimating attitude from magnetometer measurements and by Challa, Natanson, Deutschmann and Galal 2
to obtain attitude as well as rate.

Angular rate can be extracted from vector measurements in the following way. Let b represent a vector

measured by an attitude sensor such as Sun Sensor, Horizon Sensor, etc. For the time being let us

assume that b is the earth magnetic field vector. From the laws of dynamics it is known that
i b

b=b+m×b (1)
i b

where b is the time derivative of b as seen by an observer in inertial coordinates (i), b is the time

derivative of b as seen by an observer in body coordinates (b), and 03 is the angular rate vector of
coordinate system b with respect to coordinate system i. (Note that the choice of the inertial

coordinate system as the reference coordinates is arbitrary). We can write (1) as follows
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b i
[b×]o = b - b (2.a)

where [b×] is the cross product matrix of the _neasured vector b. Note that b is computable since b is

usually known from Almanac or a model, and b is computable from the measurements. Consequently, all
elements of (2.a) other than co are known. Let us. resolve (2.a) in the body coordinates and let us also

denote the transformation matrix from i to b by D _b' then (2.a) can be written as

[bx]o = l_ - D i
b.

1

where the dot denotes a simple time derivative. Note that b

to be known. We realize that o cannot be determined from

though one more vector measurement, e, from an additional

next. Similarly to (2.b), we can write for e i

[ex]o= c- D i e

When we augment (2.b) and (3) into one ex,uation we obtain
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is resolved in the i coordinatesand D i has
b

(2.b)since [bx] is not invertible.If we add

sensor,then o can be determined as shown
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then (4) can be written as
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0 -bz by"

b 0 -b
Z X
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y x
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z y
c 0 -c

Z X

-c c 0
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(5.b) o = 1cox (5.c)

d = Go (6)

Next, define G , the pseudo-inverse of G, as follows

G#= (GTG)-IG r (7)

where T denotes the transpose, then _, the best estimate of o in the least squares sense, is given by 3

A
o -- G#d (8)

Note that this solution exists only ff b and ¢ are not co-linear. An estimate of o, better than that

given in (8), can be obtained when the problem is treated as a stochastic problem and some kind of

filtering is applied to the measurements. Moreover, filtering in the sense of estimation is a must when

at each time point we have only one vector measurement. (Such case exists, for example, when we use a

Sun Sensor and some other vector measuring sensor, and the satellite happens to be in a shadowed zone).

In such ease we use the vehicle dynamics for propagating the estimate of o}. As will be shown in the

ensuing, the dynamics model of a spacecraft (SC) is a non-linear model, therefore a linear Kalman
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filter (KF) is not suitable, and some kind of non-linear estimator is needed for estimating co. The
extended Kalman filter (EKF) is, then, the natural choice. However, Algrain and Saniie 4 introduced the

Interlaced Kalman filter (IKF) which is a sub-optimal filter that is a combination of two linear Kalman

filters that operate simultaneously and feed one another. While the IKF of Algrain and Saniie was an

ingenious idea, they did not utilize its full power since they fed the filter with the angular rate

vector itself as measured by gyros and not with vector derivative information. Therefore they

practically used the IKF merely as a low pass filter and not as an estimator. This is equivalent to
A

using the IKF for filtering co computed in (8). In contrast to Algrain and Saniie, we use their idea to

estimate the angular rate vector directly from vector measurements and their time derivatives and are

able to obtain estimates even when we have a single measurement at each time point. We also extend
their dynamics model farther to include products of inertia. This leads to the use of two or three more

sophisticated KFs that make use of three dynamics models. We call the extended filter: Extended

Interlaced Kalman Filter (EIKF). Finally_2 our work differs considerably from that of Natanson i, and
Challa, Natanson, Deutschmann and Galal mainly because most of our investigation is dedicated to the

filtering stage. In the next section we develop the dynamics models which give rise to the use of the

EIKF. This leads to the development of measurement equations that correspond to the states of the

dynamic models. This is done in Section [II. In Section IV we present the stochastic models which are

used by the EIKF. They are based on the dynamics and measurement models derived in Sections II and HI

respectively. Then in Section V we introduce several options for implementing the EIKF followed by test

results of the EIKF which we show in Section VI. Finally, in Section VII we present our conclusions
from this work.

H. SPACECRAFT DYNAMICS

In order to apply a recursive estimator to estimate the angular rate vector of a gyro-less spacecraft
(SC), one needs to utilize the dynamics model of the SC. The angular dynamics of an SC is given in the
following equation s

Icb+ 11 + tox(Ico + h)= T (9)

where I is the moment of inertia matrix, 03 is the angular velocity of the satellite with respect to
inertial space, h is the angular momentum of the momentum, or reaction, wheels and T is the external

torque applied to the SC. All vectors in (9) are resolved in the b system. Since I is nonsingular, we
may write (9) as

¢b = -I-t(03 x (103 + h)] + I l(T-h) (10)
6

The inertia malrix, I, is given by

where I , I , and I
xx yy zz

ix:z1I= I -

I -lyz I

andI , I
xy xz yz

written as follows. Define

H-- -h z 0

-h 0
x

are the moments of inertia about the body major axes

and I are the product moment of inertia terms. Using

(12.a) Io --

(11)

x, y and z respectively,

these notations, (10) can be

I(II Iyy)- (Ixx-I) IIxyzz -I ]

[ Ill -Iy z (Iy_ Ixx)J

(12.b)
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_y_z
= _x_z

m my
then (10) can be written as

0 -Iy z y

If_xo2= I 0

"Ixy Ixy

(12.d) _, :
J

X

to2
y

¢02
Z

t_ = -I'lH to - I'1Io_ - I'llt_2 _, + I "](T-ll)

(12.e)

(12.c)

(13)

Let

Fee= -I" IH (14.a) Bo3= -I lIcoo3 (14.b) Bo2 = -I" 1Io32 (14.c)

then (13) can be writtenas follows

f = I" l(T-I_) (14.d)

¢_= Fo¢_+ B_ + Boo2_,+ f
(15)

The latter is the desired rotational dynamics equation which expresses the time derivative of co, the

angular velocity vector of the SC with respect to inertial space, in terms of the known forcing
function, f, and co itself. This equation is the central equation in the development of the filter. We

realize that the solution of (15) hinges on our knowledge of Z and _.. As will be shown later, they will

be estimated by their own estimator. Those estimators will each need a dynamics model for the the
vector it is set to estimate. The derivation of the dynamics model is presented next. First we

dffferentiate(12.d) toob_ thesecondd:_csequation

yz yz

XZ Xg

xy xy

Let

F = 0 (17.a) and
Z

then (16) can be written as

(16)

BZ= & 0 Y (17.b)

&. 0

= FZ + BZ¢o (18)

which is the desired equation. To obtain the dynamics equation for _.,we differentiate(12.e).This

yields

_, = 2_ COy (19)y

0 2t_ o z

Let
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Fx=0 (20.a) and = (20.b)

0 2d_z

then (19) can written as

_, = F_,_. + B_to (21)

Equations (15), (18) and (21) are the deterministic dynamics equations which describe the behavior in
time of co and the products of its components. They form the foundation of the stochastic dynamics model
of the EIKF.Next we develop the measurement equations which will serve as the basis of the stochastic
measurement model used by the EIKF to update its estimates.

HI. MEASUREMENT EQUATIONS

111.1 Raw Vector Measurements

We start by deriving the measurement equation for the primary KF whose dynamics is given in (15) and

which estimates to. Re-write (2.b) i

[bx]to= 6 -D i b (2.b)
b

Let
i

3Ztob= !_ - D i b (22.a) and 3C = [bx] (22.b)b b

then (2.b). can be written as

3
z

3ztob=3Cbto (22.c)

The measurement vector is a computable three dimensional vector which is data to be fed into the

EIKF part that estimates to. We note that 3Cb is a 3x3 singular matrix. It is obvious that one of the

three equations of (23) is a linear combination of the other two and, thus, is superfluous. Although a
white noise will be added to ztob at a later stage (see(37)) and , thus, will turn the three equations

in (23) into independent equations, the singularity of 3Cb will be lroublesome. Problems may arise in

the KF, designed to estimate co, when computing its gain according to K-- Pto3CTb [ 3CbPtoUb+3-T 3Rto ]-1

3C p 3cT + 3R ]- 1. The matrix 3C P 3cT is singular, and since the elements of the noise eovariance
b to b to b to b

3Rto, arc rathersmall,the inverseyieldsa matrixwhose elementsare very large.Thisin turnmatrix,

yields a very inaccurate gain matrix. All that keeps the inverted matrix from being strictly singular
is the noise covariance matrix. The physical meaning of this ill-conditioned case is that the noise is
the added information which causes the dependent deterministic equations to be independent. This
informationis, of course,meaninglessand should not be considered.As a remedy to this

ill-conditionedcase,we eliminateone of the rows of (22.e).The questionis then which ro_ to

eliminate.Itis clearthatthe answer to thisquestionhingeson the value of the components of zol,.

Obviously,if the SC rotatesfastaboutthe body z axisand not at_dl aboutthe othertwo, thenit

can be seen eitherfrom (2.b)or (22.a)thatthe thirdcomponent of ztob is negligibleand thusthe

thirdrow of (22.c)shouldbe eliminated.For the sake of the ensuingpresentationwe willassume that

thisisthecase.This check,however,has to be performed beforeevery measurement update of the
filter.Having made thelatterassumption,define
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then

Z(.ob=
33Zo)b, I"

ZCOb ,2

I O -b bl]
z (23.b)

(23.a) and Cb= b 0 -b
z

zO._b= CbCO (23.c)

Next we have to develop the measurement equation needed to estimate g and _,. We can choose one of two

options which are based on entirelydifferentapproaches. According to one approach we obtain the
needed measurements from a second differentiationof a measured direction.It is well known', and

indeed very easilyshown, that,using the notation

i

w=b

the following holds

b

(24.a) and u = b

i
D i w = II+ 2co x u + t_x b + co x(cox b) (25)
b

i

where w is resolved in the i coordinates and, as before, the dot symbolizes time differentiation

(24.b)

performed in the b coordinates. Let

then (25) can be written as

Let

3 D i
Zggb= b

i

w- /_-2coxu-_x b (26)

3

zg"=t_ cox (o_x b) (27.a)

 bzb] [i'b]3M = 0 by (27.b) - 0 -b x (27.c)
b z Y

b 0 x 3Nb=
_bz 0y" Z

'-y X

then it can be easily verified that (27.a) can be written as

3 3 +3N _, (28)
zg_.b=Mb_ b

Note that like 3z before,3 too is a computable vector which isdata to be fed into the EIKF part
co z_

that estimates _ and _. Now, the argument that led to the reduction of the expressions in (22) to the

corresponding expression in (23), holds here too. Consequently, we eliminate one row in the expressions

_n (27). (As before, the row to be eliminated is determined by the relative size of the components of

z_). Assume that here too, the third raw is eliminated, then if we define

r>l b]= z (29.b)

,I (29.a) Nb bz 0 bzg_'b= [_zggb,a

itcan be easilyverifiedthat(28) can be writtenas

zg_,b=Mbg + Nb_.

I-by "bl]

0 -b

x (29.c)
Nb= 0 -b

(29.d)

If we now have a second vectormeasurement, say c, then we get an identicalsetofequations when now b

is replaced by c and the subscriptb is replaced by the subscriptc. Explicitly,we do the following.

Define
i

Z = C - Dib ¢ (30.a) and Cc = [cx] (30.b)

i b i

D i
m = c (30.c); n= c (30.d); zz_= b m- n- 2coxn- _xc (30.e)
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IiccjM= z y
c

c 0
y x

then the measurement equationsare

(30.t) N = x (30.g)
c 0 -c

= C CO (31.a)zo)¢ c

z = + Ne_, (31.b)Z;_c McZ

From the above, the extension of the measurement equations in case that we have more than two vector

measurements at one time point is obvious. The other option for obtaining measurement equations needed

to estimate Z and _. is based on _, the EIKF-generated estimate of CO.We will postpone the introduction

of this option until we present the EIKF.

I11.2 Pre-Processed Vector Measurements

When we measure two different vectors at the same time point, then, as shown in (8), we have enough

equations to obtain an estimate of CO without resorting to a recursive estimator. Therefore we can,

first, compute an estimate of CO using (8), and then filter the estimate using the EIKF. As mentioned

before, this is what was basically done in [6], only that there, CO was obtained as an output of

gyroscopes rather than an analytic solution based on vector measurements. Although this approach does

not fully utilize the capabilities of a recursive estimator, for the sake of completeness, we show here

how to formulate the measurement equation in order to apply the EIKF in this case too. Re-write (8)
A
CO= G#d (8)

Let

z = G#d (32)
top

and let U denote the 3x3 identity matrix, then we can write (30) as

z = U CO (33)
top

The last equation is the measurement equation which corresponds to the dynamics equation of (15).The

measurement equation for estimating Z and _. can be either thosepresented in the preceding sub-section;
namely (29) and/or (31.b), or they can be directly related to CO computed in (8). The latter will be
explained later when we introduce the suitable EIKF.

IV. THE EIKF MODELS

The dynamics and measurement equations presented in Section II and Section HI respectively, are
nominal equations. In preparing the equations for use in a filtering routine, we add to them white

noise vectors to express model uncertainties. These uncertainties stem from two sources, first, there

are modeling errors because the equations are not the exact dynamics and measurement models, and

second, in the sub-optimal filter that we will use, we will assume that Z and _. are constant in the

propagation time-interval that we will use to propagate the estimate of CO. This assumption is clearly
wrong even though it enables us to obtain satisfactory results. The importance of the white noise added

to the each dynamics equation is in its PSD matrix which we adjust by trial and error to obtain the

best filter performance. Similarly, the white noise added to each of the measurement equations
indicates the measurement accuracy expressed by the covariance matrix of the noise vectors. This

covariance too, is adjusted in order to yield the best filter performance. Adding the white noise

vector, no), to the central dynamics equation in (15), yields the following main dynamics model

I (b= Fcoco + BCOZ+ BCO2_+f+ nco [ (34)

Similarly we add white noise vectors to the right hand side of (18) and (21) which become
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[Z = + + [ (35) _. = F_._. + BZc_ + (36)

]

FZZ Boo n

Adding whim noise to the measurement equations turns, respectively, (23.c), (29.d) and (33) into

The extension of (37) and (38) to the case where we have more than one vector measurements is obvious.
As mentioned before,severalmeasurementmodels which arc based on the estimateof o),willbe

introducedwhen we presenttheEIKF in thenextsection.

V. THE EXTENDED INTERLACED KALMAN FILTER

Given the models of the preceding sections, we have several options for designing an EIKF. Like the
models, the EIKF itself can be divided into two basic categories. The first is one which handles raw
vector measurements, and the second category is one which handles pre-processcd vector measurements. In

the ensuing we only present the models to be used in the interlaced linear KFs. The KF algorithm itself
can be found, of course, in standard KF texts.

V.1 Raw Vector Measurements

We have several options for designing an EIKF when given raw vector measurements.

The following are some options.

Option 1:

We run three parallel linear KFs. The equations of the filters are as follows.

Filter ]

The dynamics equation is derived from (34) and the measurement equation is given in (37)
A

¢0-- FO}fO + B___ + Bfo2_,+ f+ no}

Zfob= Cb¢.0 + vf.0b

A

Note that _ and _. are inputs from the other two filters that run in parallel to Filter 1.

(40.a)

(40.b)

Filter 2

The dynamics equation of the second filter is derived from (35) and the measurement equation is derived

from (38) Z = FZZ + BZ_ + nZ (41.a)

A

zZ)_b- Nb_, = MbZ + vZ_,b (41.b)
A

Here (o and Z are inputs from the other two parallel filters.

Filter 3

The dynamics equation of the third filter is derived from (36) and the measurement equation from (38)

_,= F_, + B_ + n_, (42.a)

M ^ - Nb_,+ (42.b)zz_" bx Vz_b
^

Here _ and _ are inputs from the other two parallel filters. Note that the preceding measurement
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equations are based on a single vector measurement; namely, b. If we obtain another vector measurement,
say c, at a certain time point, then we use (30) and (31) to generate measurement models similar to
(40.b), (41.b) and (42.b) and perform consecutive measurement updates of the three interlaced filters,
or we can augment the two vector measurements in each filter and perform in each of them one combined
measurement update at that time point. The extension of this case to more than two simultaneous
measurements is immediate. The three f'dter model of Option 1 is summarized in Table I.

Dynamics Mea s urement

BO3z BO32_ (40.a)¢_ = FO3O3+ ^ + + f + no3

= F Z + B _ + n (41.a)

= F_._ + BZ_ + n_. (42.a)

Z o3b = Cbo3 + Vf0b (40.b)

z - N _ + v (41.b)
_,b b = MbZ X_,b

M ^ = NbZ + v (42.b)z_,b" bZ g 7,b

Table I: Filter Model of Option 1

A block diagram representation of the EIKF of Option 1 is depicted in Fig. 1.

b
I KF No. 1 (yields _o) ]) Eqs. (40.a) and (40.b) [

J

Eqs. (41.a) and (41.b)

l
KF No. 3 (yields _,)

Eqs. (42.a) and (42.b)

A
)CO

Fig.l: Block Diagram of the EIKF of Option 1.

Option 2:

Here we run only two parallel interlaced linear KF. They are as follows.

Filter 1

This f'dter is identical to Filter 1 of the preceding option.

Filter 2

In order to present Filter 2, we adopt the following definitions

Ig F 0

X= I_. (43.a) F = X
_. • 0 F

(43.b)
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B = (43.c) n = (43.d)x B x n

Zxb= zx_ (44.a) Cxb= E Mb NI_ (44.b) Vxb = V _,b

then (41.a)) and (42.a) can be augmented into the single dynamics equation

XfFX+B_+n
x x x

and (38) can be written to suit (45.a) as

(44.c)

(45.a)

- (45.b)
Zxb- CxbX + Yxb

The EIKF model of Option 2 is summarized in Table II. A block diagram representation of the EIKF is

depicted in Fig. 2.

Dyn am its Me a sur ement

B A A (40.a)m=Foo_+ cox + Ba)2_.+ f+ nm

X=F X+B _+ n (45.a)
X X X

Z0)b= C b_ + Vfob (40.b)

z = C X + v (45.b)xb x b xb

Table II: Filter Model of Option 2

b

bl
I KF No. 1 (yields _)> Eqs. (40.a) and (40.b)

/

KF No. 2 (yields _, _) _-----_,
Eqs. (45.a) and (40.b)

A
)to

A

_. (As partsof _)

FIg.2: Block Diagram of the EIKF of Option2.

Option 3:

Recall that in Option 1, as well as in Option 2, we had to use the second time derivative of the
measured vectors in order to generate the data for the measurement models. We can use a different
approach though that does not require a second differentiation. We simply use _ which is estimated in
Filter 1 and treat it in the other parallel filters as a "measurement" of Z and Z for they are
functions of to (see (12.d.e)). Doing so we obtain the following measurement equations

AA

_mz I

AA

_x_z = 0

AA

_x_ 0

0 0

1 0

0 1

OyCOz

O_x_z

comy

Vzx

+ Vzy

Vzz

(46.a)
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which we can write as

and

_2
x

y

#
z

1

= 0

0

2
0 0 m

x

2
I 0 m

Y
2

0 I m
z

V_,x

+ V_y

v)_z

(46.b)

(47.a)

z_: U_,+ v_, (47.b)

where, as before, U is the identity matrix. We added the white noise vectors, vX and v)_ since on the

left hand side of the above equations we do not have X and )_, but rather their estimates. In this

Option The three parallel filters are as follows.

Filter 1

This filter is identical to Filter 1 in Option 1.

Filter 2

The dynamics equation of this filter is exactly like the one given in (41.a), but the measurement
equation is that given in (47.a); that is,

=Fzz + BX_ + nX (48.a)

z = UX + v (48.b)
Z

Filter 3

The dynamics equation of this filter is exactly like the one given in (42.a), but the measurement
equation is that given in (47.b); that is,

Z : Fj_Z, + B)fo + (42.a)

zz: U _ + v_, (47.b)

The EIKF model of Option 3 is summarized in Table III.

Dyn am ics Measurement

/' _,+r+n (40.a)¢b = Fcoo} + BoX + Bo32 o

: FXZ + BZ_ + n Z (41 .a)

_.= F_7, + B_ + n_, (4 2 . a)

Zc0b= CbO3 + Vmb (40.b)

z : U Z + v (47.a)
Z Z

zz= U )_ + v)_ (47.b)

Table III: Filter Model of Option 3

A block diagram representation of the EIKF of Option 3 is depicted in Fig. 3.
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KF No. 1 (yields _)> Eqs. (40.a) and (40.b)

03
Eqs. (41.a) and (47.b) F

i_ A

^ KF No. 3 (yields Z)
03 Eqs. (42.a) and (47.b)

^
)03

FIg.3: Block Diagram of the EIKF of Option 3.

V.2 Pre-Processed Vector Measurements

As we have already seen, pre-processed vector measurements yield an estimate of o3, and as mentioned
earlier, the full advantage of a recursive estimator is not utilized when a measurement or an estimate
of 03 is available; however, for the sake of completeness, we present an EIKF scheme for this case too.
The filter model of this case is similar to the model of Option 3. The dynamics equation of the present

Filter 1 is identical to that of Option 3 but the measurement equation is different. Now the
measurements that are fed into Filter 1 are not vector measurement, but rather a preliminary estimate

of 03, which we denote by _ , thus following (8) and (32) we define
P

= G#d (48.a)
p

and ^
z = m (48.b)

cop p
and then, following (39), we write the measurement equation of Filter 1 as

z = U co + v (48.c)
COp 03

As for Filters 2 and 3, while their dynamics equations are identical to those of Option 3, their
measurement equations can be based on either the input _ (which is also the input to the present

P

Filter 1), or on _ which is the input to Filters 2 and 3 of Option 3. The EIKF of this case is as
follows.

The EIKF for the Pre-Processed Vector Measurements:

We run three linear Mters in parallel.

Filter 1

The dynamics equation is identical to that of Option 3. The measurement equation is

z = U 03 + v (48.c)
COp 03

Filter 2

The dynamics model is identical to that of Filter 2 of Option 3. As for the meastm:ment model, define
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then

Zxp= / (49.a)

Zxv U Z + vxp (49.b)

Filter 3

The dynamics model is identical to that of Filter 3 of Option 3. As for the measurement model, define

px

z_.p= APY/ (50.a)

O_pz_

then

ZXp= U X + v_.p

The model of the EIKF for the pre-processed vector measurements is summarized in Table IV.

(50.b)

Dy na m i c s Measurement

BCOZ ^ (4 0 . a)t_ = Fcoco + ^ + Bco2X + f + nco

/k

= FXX + BZto + n Z (41 .a)

X = FXX + B_o + nx (4 2.a)

z = U o + v (48.c)

z = U X + v (49.b)
Xp Xp

Zgp= U L + vxp (50.b)

Table IV: Model of the EIKFfor Pre-Processed
Vector Measurements

A block diagram representation of the latter EIKF is depicted in Fig. 4. As mentioned earlier, here too
A .

we have several options. We can, for example, use co m the dynamics equation of Filters 2 and 3 in
p

addition to using it as measurements in these two filters.

A f ACO )CO
P

A
CO

P

r KF No. 1 (yields _)> Eqs. (40.a) and (48.c)

KF No. 2 (yields _)

Eqs. (41.a) and (49.b)

A

A KF No 3 (yields X)¢0
p Eqs. (42.a) and (50.b)

Fig.4: Block Diagram of t h e

-X

EIKF for Pre-Processed Vector Measurements
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V. FILTER TESTING

As a first step in the testing of the EIKF for estimating o3, we applied the filter presented as Option

1 (see Table I and Figure 1) to simulated data. After obtaining satisfactory results we applied the
filter to real data obtained from the RXTE satellite which was launched on Dec. 30, 1995. We used the

downlinked magnetometer data (b i) and Sun sensor data (ci) as well as the wheel momentum data. We

applied the EIKF just before the beginning of a maneuver; namely, at 21h, 43rain and 31.148see on Jan.
4, 1996. The true rates, estimated rates, and the estimation errors are shown in Figs. 5, 6, and 7,

respectively.

VI. CONCLUSIONS

In this paper we presented an algorithm for estimating the angular velocity of a rigid body like

satellite. The algorithm is based on vector measurements and their derivatives. The algorithm is an
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extension of an estimator named, Interlaced Kalman Filter (IKF), which was introduced in the past by
Algrain and Saniie. The IKF enables the use of several linear filters running in parallel for

estimating the state of a non-linear dynamic system. In this paper we developed an IKF for a more
general dynamic model and named it Extended Interlaces Kalman Filter (EIKF). Unlike Algrain and Saniie,
we make a full use of the estimator in that we use direction vectors, rather than measured angular

velocity to obtain an estimate of the angular velocity. In this paper we presented several versions of
the EIKF for angular velocity estimation.

Simulation results indicate that the EIKF is an efficient and stable estimator of the angular velocity
vector.

0.2 . i , , ,
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200 40D 600 800 000

1"_raeStep (see)

120"0

Fig. 7: Estimation Error of the RXTE Angular Velocity Components
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